
NOTES ON SPLITTING FIELDS

CİHAN BAHRAN

I will try to define the notion of a splitting field of an algebra over a field using my words,
to understand it better. The sources I use are Peter Webb’s and T.Y Lam’s books.
Throughout this document, k is a field and A is a (not necessarily finite-dimensional, I
will state this assumption when necessary) k-algebra.

The small amount of theory of finite-dimensional algebras I know, like the correspon-
dence between the simple and indecomposable projective modules can be seen to follow
from the theory of (left or right) artinian rings. Really, this theory does not make
use of the underlying field. In specific examples though, it is quite handy to have k-
dimensions of everything around. One way to make use of the underlying field that
won’t be applicable for general artinian rings is to consider its extensions and extend
the scalars.

There we go. Let k ⊆ F be a field extension. Then we naturally have a restriction
functor F -Alg→ k-Alg which has the left adjoint F ⊗k − : k-Alg→ F -Alg. The unit of
this adjunction on A is the k-algebra homomorphism

ϕ : A→ F ⊗k A

a 7→ 1⊗ a
Note that ϕ is injective. Now ϕ yields a restriction functor ϕ∗ : (F⊗kA)-Mod→ A-Mod.
ϕ∗ has a left adjoint, say ϕ∗ : A-Mod→ (F ⊗k A)-Mod.

Proposition 1. ϕ∗ is naturally isomorphic to F ⊗k −.

Proof. The functor F ⊗k − here cannot be the same with the above, that was between
algebra categories. So let’s spell out what it is. Note that both A and F are k-algebras.
Hence if we have a (left) A-module M and an F -module V, then V ⊗kM has a natural
F ⊗k A-module structure. Taking V = F , we see that F ⊗k M is a F ⊗k M -module.
So the assignment

F ⊗k − : A-Mod→ (F ⊗k A)-Mod

M 7→ F ⊗k M

is well-defined on objects. For morphisms, there is a natural candidate: if f : M →M ′

is an A-module map, then let (F ⊗k −)(f) = idF ⊗f : F ⊗k M → F ⊗k M
′. We have

(idF ⊗f) ((α⊗ r) · (β ⊗m)) = (idF ⊗f)(αβ ⊗ rm)

= αβ ⊗ f(rm)

= αβ ⊗ rf(m)

= (α⊗ r) · (β ⊗ f(m))

= (α⊗ r) · (idF ⊗f)(β ⊗m)

for any α, β ∈ F , r ∈ A, m ∈M . Si idF ⊗f is really an F ⊗kA-module homomorphism.
So we have well-defined assignments on both the objects and morphisms for F ⊗k −
which satisfy the functor axioms.
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Now let’s move on to the adjunction with ϕ∗. Given an A-module M and a F ⊗k A-
module N , we seek an isomorphism

HomA(M,ϕ∗(N)) ∼= HomF⊗kA(F ⊗k M,N)

that is natural in M and N . (Note that N is an A-module via ϕ : r 7→ 1F ⊗ r)
We already have a natural isomorphism

η : Homk(M,N)→ HomF (F ⊗k M,N)

f 7→ η(f) : (α⊗m) 7→ αf(m) = (α⊗ 1A)f(m)

by the usual theory of extension of scalars since N is an F -vector space via αn =
(α ⊗ 1A)n. We need to check that if f is an A-module map then η(f) is an F ⊗k A-
module map. Indeed, the routine check

η(f)((β ⊗ r) · (α⊗m)) = η(f)(βα⊗ rm)

= (βα⊗ 1A)f(rm)

= (βα⊗ 1A)(1F ⊗ r)f(m)

= (βα⊗ r)f(m)

= (β ⊗ r)(α⊗ 1A)f(m)

= (β ⊗ r) · η(f)(α⊗m)

verifies so. The inverse of η is given by

θ : HomF (F ⊗k M,N)→ Homk(M,N)

g 7→ θ(g) : m 7→ g(1F ⊗m)

And if g is an F ⊗k A-module homomorphism, then we have

θ(g)(rm) = g(1F ⊗ rm)

= g((1F ⊗ r) · (1F ⊗m))

= (1F ⊗ r) · g(1F ⊗m)

= r · g(1F ⊗m)

= r · θ(g)(m) ,

that is, θ(g) is an A-module homomorphism. Thus η and θ restrict to the desired
isomorphism and they are already natural in M and N . �

Let’s take a step back and look at what we’ve done (gosh I’m bad at writing sometimes).
Everything stemmed from the field extension k ⊆ F which gives us a way to induce
k-algebras to F -algebras and to induce modules over a fixed k-algebra A to modules
over the induced F -algebra. We called this induction functor ϕ∗ above and saw that
it is naturally isomorphic to F ⊗k −. I find it more suggestive to write (−)F for this
functor and also AF for the induced algebra F ⊗k A.

Remark 1. Let M be an A-module such that dimkM is finite. Then dimF M
F =

dimkM . In particular, M = 0 if and only if MF = 0.

Proposition 2. Let M be an A-module and k ⊆ F a field extension. Consider the
AF -module MF . If MF is an indecomposable (simple) AF -module, then M is an inde-
composable (simple) A-module.
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Proof. Better to use contrapositives. By the remark above, a nontrivial decomposition
of M into direct summands yields a nontrivial decomposition of MF . And if N is a
nontrivial submodule of M , then NF embeds into MF as a submodule since (−)F ∼=
F ⊗k − is an exact functor. NF is a nontrivial submodule because it is neither 0 nor
MF as N 6= 0 and M/N 6= 0 so that NF 6= 0 and 0 6= (M/N)F ∼= MF/NF . �

Let M and N be A-modules. Via the functor (−)F : A-Mod → AF -Mod, we have a
map

HomA(M,N)→ HomAF (MF , NF ) .

This map is actually k-linear. Since the right hand side is an F -vector space, via the
adjunction of (−)F with the restriction, we get an F -linear map

θ : (HomA(M,N))F → HomAF (MF , NF ) .

Lemma 3. θ is injective and if moreover dimkM <∞, then θ is an isomorphism.

Proof. Let {αi : i ∈ I} be a basis of F over k. Note that an arbitrary element of

(HomA(M,N))F = F ⊗k HomA(M,N) is of the form∑
αi ⊗ fi

where αi ∈ F and fi : M → N is A-linear. If such an element is in ker θ, then

0 =
∑

αi(fi)
F

=
∑

αi(idF ⊗fi) .

So for every m ∈M , we have

0 =
Ä∑

αi(idF ⊗fi)
ä

(1⊗m)

=
∑

αi (1⊗ fi(m))

=
∑

αi ⊗ fi(m) .

This equality happens inside NF and we have

NF = F ⊗k N

∼=

(⊕
i∈I

k

)
⊗k N

∼=
⊕
i∈I

k ⊗k N

∼=
⊕
i∈I

N

where the isomorphism from the bottom row to the top row is given by

(ni)i∈I 7→
∑
i∈I

αi ⊗ ni .

The sum makes sense because only finitely many ni’s are nonzero. As a consequence

NF has the decomposition NF =
⊕
i∈I

(αi ⊗k N) as a k-vector space. Hence the above
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sum being zero implies that fi(m) = 0 for every i ∈ I. m was arbitrary, so fi’s are zero
and hence

∑
αi ⊗ fi = 0.

Now let g : MF → NF be an AF -linear map. Since NF =
⊕
i∈I

(αi ⊗k N), for m ∈ M

we have

g(1⊗m) =
∑

αi ⊗ gi(m)

where each gi is a function from M to N . This representation of g(1 ⊗m) is unique.
Therefore via ∑

αi ⊗ gi(m+m′) = g(1⊗ (m+m′))

= g(1⊗m+ 1⊗m′)
= g(1⊗m) + g(1⊗m′)

=
∑

αi ⊗ gi(m) +
∑

αi ⊗ gi(m′)

=
∑

αi ⊗ (gi(m) + gi(m
′)) ,

we conclude that gi’s are additive maps. For r ∈ A, we have

g(1⊗ rm) = g((1⊗ r) · (1⊗m))

= (1⊗ r) · g(1⊗m)

since 1⊗ r ∈ F ⊗k A = AF and g is AF -linear. From here we get∑
αi ⊗ gi(rm) = (1⊗ r) ·

Ä∑
αi ⊗ gi(m)

ä
=
∑

αi ⊗ rgi(m) ,

thus gi’s are actually A-linear. Let η be the following composition of k-linear maps

M // MF g // NF ∼=
⊕
i∈I

N

where the first arrow is the natural map m 7→ 1 ⊗ m. By our description, gi’s are
precisely the coordinate maps of η. Therefore if dimkM < ∞, η has finite k-rank

and hence only finitely many gi’s can be nonzero. Thus f =
∑

αi ⊗ gi is a legitimate

element of (HomA(M,N))F . Now since

θ(f)(1⊗m) =
∑

αi ⊗ gi(m) = g(1⊗m)

for all m and θ(f), g are F -linear maps, we have θ(f) = g. So θ is surjective. �

Corollary 4. If M is a finite-dimensional A-module and k ⊆ F is a field extension,
then (EndA(M))F ∼= EndAF (MF ) as F -algebras.

Proof. Take N = M in Lemma 3 and observe that the map θ preserves multiplication.
�

It is natural to question to what extent the converse of Proposition 2 holds. That is,
when does a simple A-module remain simple when induced over extensions of k? The
following proposition answers this:

Theorem 5. Let M be a finite-dimensional simple A-module. TFAE:
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(1) For every field extension k ⊆ F , MF is a simple AF -module.
(2) If F is an algebraically closed field containing k, then MF is a simple AF -module.
(3) EndA(M) ∼= k.
(4) The k-algebra homomorphism A→ Endk(M) is surjective.

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (3), we have

(EndA(M))F ∼= EndAF (MF ) ∼= F

where the first isomorphism is Corollary 4 and the second isomorphism is by Schur’s
lemma. Thus

1 = dimF (EndA(M))F = dimk EndA(M)

and we deduce that EndA(M) ∼= k.

For (3) ⇒ (4), write ϕ : A→ Endk(M) = E, B = ϕ(A) and D = EndA(M). We want
to show B = E. The assumption is that every element in D is a scalar multiplication,
so D = Z(E) - the center of the endomorphism algebra. Also by definition we have
D = CE(B). Now B is a finite-dimensional k-algebra, hence left (and right) Artinian.
Also M is a simple B-module, therefore by the double-centralizer theorem

B = CE(D) = CE(Z(E)) = E .

For (4) ⇒ (1), write E = Endk(M). Now M is the only simple module of E since
picking any k-basis e1, . . . , en for M establishes isomorphisms M ∼= kn and E ∼= Mn(k)
where the action is matrix multiplication. Note that for a field extension k ⊆ F , we have
MF ∼= F n and EF ∼= Mn(F ) where the EF action on MF is again matrix multiplication.
Thus MF is simple as an EF -module.

Applying (−)F to the surjection A→ E yields an F -algebra map

AF → EF ∼= EndF (MF )

where the isomorphism is by Corollary 4. This surjective ((−)F is exact!) map is the one
that gives the AF -module structure on MF , so the EF -submodules and AF -submodules
of MF coincide. Thus MF is a simple AF -module. �

From now on, we assume that A is a finite-dimensional k-algebra.

We call a simple A-module - which is necessarily finite-dimensional since it is a quotient
of AA - satisfying one (and hence all) of the conditions in Theorem 5 absolutely
simple. Note that if S is an absolutely simple n-dimensional A-module, its multiplicity
in A/RadA is n and the matrix algebra corresponding to S in the Artin-Wedderburn
decomposition of A/RadA is Mn(k).

Example. Let G be a finite group. Then the trivial module k is always an absolutely
simple kG-module. More generally every 1-dimensional module S is absolutely simple
because Endk(S) is already isomorphic to k, hence so is EndkG(S).

We call A a split k-algebra if every simple A-module is absolutely simple. By our
observation above, we have the following fact:

Proposition 6. Suppose A is split. Then if S is a complete list of non-isomorphic
simple A-modules, then

A/RadA ∼=
⊕
S∈S

S dimS
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and so

dim(A/RadA) =
∑
S∈S

(dimS)2 .

Example. Mn(k) is a split k-algebra. We showed this in the proof of (4) ⇒ (1) in
Theorem 5.

We call an extension field F of k a splitting field for A if AF is a split F -algebra.

Observe that by (2) in Theorem 5, if k is algebraically closed then A is split. More
generally, if F is an algebraically closed field containing k then F is a splitting field for
A. So splitting fields always exist as we can go to the algebraic closure k. But k is huge
and really an overkill - note that for a group algebra having some roots of unity around
may be enough. Actually splitting fields can always be found in finite extensions of k,
which is our next aim to show.

If A is split, the extension of scalars functor has nicer properties. Note that given a
field extension k ⊆ F , by applying the exact functor (−)F to the inclusion RadA ↪→ A
we may identify (RadA)F as a submodule (actually a two-sided ideal) of AF .

Proposition 7. With this identification, (RadA)F = RadAF when A is a split k-
algebra.

Proof. The (left or right) AF -module AF/(RadA)F ∼= (A/RadA)F is semisimple since
A is split. Hence RadAF ⊆ (RadA)F . On the other hand, (RadA)F = F ⊗k RadA is
a nilpotent ideal of AF = F ⊗k A so we get the reverse inclusion. �

We can do this for modules too. Note that similar to above, given an A-module U and
a submodule V ⊆ U , we can identify V F as an AF -submodule of UF .

Corollary 8. Suppose A is a split k-algebra. Let U be a finite-dimensional A-module.
Then identifying (RadU)F as a submodule of UF , we have (RadU)F = RadUF .

Proof. We have

RadUF = (RadAF ) · UF

= (RadA)F · UF

= (F ⊗k RadA) · (F ⊗k U)

= F ⊗k (RadA · U)

= F ⊗k RadU

= (RadU)F

where the first and fifth equality holds because UF is an artinian AF -module and U is
an artinian A-module. �

The next lemma gives us a way to check whether a module is a result of extension of
scalars:

Lemma 9. Let k ⊆ F be a field extension and V be a finite-dimensional AF -module.
Then V ∼= UF for some A-module U if and only if V has an F -basis v1, . . . , vn such
that when EndF (V ) is identified with Mn(F ) using this basis, the image of the composite
map A→ AF → EndF (V ) lies in Mn(k).



NOTES ON SPLITTING FIELDS 7

Proof. Assume V ∼= UF for some U . Since dimk U = dimF V < ∞, we can pick a
k-basis u1, . . . un for U and get a k-algebra isomorphism Endk(U) ∼= Mn(k) out of it.
Since (−)F : k-Alg → F -Alg is the left adjoint of the restriction functor, we have a
commutative diagram

A //

��

Endk(U)

��

AF // (Endk(U))F ∼= EndF (V )

of k-algebras using the unit of the adjunction. Note that 1⊗ ui’s are an F -basis for V
which gives an isomorphism EndF (V ) ∼= Mn(F ) and the map which completes

Endk(U) //

��

Mn(k)

EndF (V ) // Mn(F )

into a commutative square is just the inclusion Mn(k) → Mn(F ). Thus the image of
the composite map A → AF → EndF (V ) lies in Mn(k) by the commutativity of the
first diagram.

Conversely, assume V has such a basis v1, . . . , vn. Let U be the k-span of these vectors
inside V . Then by assumption, U is an A-submodule of V . Now a pure tensor α⊗ r ∈
F ⊗k A = AF acts on a basis element vi by

(α⊗ r) · vi = (α · (1⊗ r)) · vi = α · (rvi) .

Note that rvi ∈ U here. On the other hand, UF has an F -basis consisting of 1 ⊗ ui’s
and we have

(α⊗ r) · (1⊗ ui) = (α⊗ rui) = α · (1⊗ rui) = α · (r(1⊗ ui))

so the bijection vi ↔ 1⊗ ui preserves the AF -action and V ∼= UF . �

When an AF -module V turns out to be an induced from an A-module as in Lemma 9,
we say that V can be written in k.

Theorem 10. Let k ⊆ E ⊆ F be field extensions. TFAE:

(1) F is a splitting field for A and every simple AF -module can be written in E.
(2) E is a splitting field for A.

Proof. (1) ⇒ (2): Let V to be a complete list of non-isomorphic simple (and hence
absolutely simple) AF -modules. Then there is a list, say U , of AE-modules such that
every V ∈ V is isomorphic to UF for some U ∈ U .

Note that every U ∈ U is simple by Proposition 2. Now let K be an algebraically
closed field containing F (we may pick K = F for instance). Then for every U ∈ U ,
the AK-module UK ∼= (UF )K is simple since UF is absolutely simple.

So by part (2) of Theorem 5 every U ∈ U is absolutely simple. We want to show that
U is a complete list of simple AE-modules (up to isomorphism) to deduce that E is a
splitting field for A.
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To that end, let S be a simple AE-module. Then there exists an idempotent e ∈ AE

such that eS 6= 0 but e annihilates every other simple AE-module (see Theorem 7.13
in Webb’s book). Since AE embeds into AF we can consider e as an idempotent in AF .
Since RadAF does not contain idempotents, there exists V ∈ V such that eV 6= 0. Now
pick U ∈ U such that V ∼= UF . Then e cannot annihilate U , which forces U ∼= S.

(2) ⇒ (1): We can replace E with k and assume that A is already split. Let S
be a complete list of non-isomorphic simple A-modules. So we have an A-module
isomorphism

A/RadA ∼=
⊕
S∈S

S nS

for some nS (we actually know by Proposition 6 that nS = dimS but we don’t need
this fact here). Applying (−)F here and using Proposition 7, we get an AF -module
isomorphism

AF/RadAF ∼=
⊕
S∈S

(
SF
)nS .

Note that each SF is a simple AF -module because each S is absolutely simple. Thus
every simple AF -module must be isomorphic to some SF . In other words, simple AF -
modules can be written in k.

It remains to show that F is a splitting field for A, that is, AF is a split F -algebra.
So let U be a simple AF -module and F ⊆ K a field extension of F . By what we just
showed, U ∼= SF for some simple A-module S. Since A is split, SK = (SF )K ∼= UK is
a simple AK = (AF )K-module. �

Proposition 11. Let F be an algebraic extension of k and V a finite-dimensional AF -
module. Then there exists an intermediate field k ⊆ E ⊆ F with [E : k] <∞ such that
V can be written in E.

Proof. Let v1, . . . , vn be an F -basis of V with which we can identify EndF (V ) with
Mn(F ). Pick a k-basis a1, . . . , at for A and let B1, . . . , Bt be their images under the
composite map A → AF → Mn(F ). Let E be the subfield of F generated by k and
the entries of Bi’s. Since E is generated over k by finitely many algebraic elements,
k ⊆ E is a finite extension and by construction Bi’s lie in Mn(E). The ai’s gets
sent to an E-basis of AE under the natural map A → AE and hence the composite
AE → (AE)F = AF →Mn(F ) has image contained in Mn(E). Invoke Lemma 9. �

Corollary 12. A has a splitting field which has finite degree over k.

Proof. Let F = k. Being a finite-dimensional F -algebra, AF has finitely many simple
modules. So by repeated application of Proposition 11 (the extension k ⊆ F is alge-
braic!), we get an intermediate field k ⊆ E ⊆ F with [E : k] < ∞ such that every
simple AF -module can be written in E. Theorem 10 applies and E is a splitting field
for A. �

Corollary 12 shows that there are relatively small splitting fields for A. On the other
extreme, we might want to get large splitting fields. A natural question would be
that if F1 and F2 are splitting fields for A, can we find a larger splitting field which
contains both Fi? By Theorem 10, field extensions of splitting fields are splitting fields
themselves, so the following lemma suffices for a positive answer.
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Lemma 13. Let F1 and F2 be field extensions of k. Then there is a field extension F
of k such that there are injective k-algebra maps F1 ↪→ F and F2 ↪→ F .

Proof. From the k-algebra B = F1⊗k F2. Since B 6= 0, it has a maximal ideal m. Then
the k-algebra F = B/m is a field and the composite k-algebra map Fi → F � F is
necessarily injective as Fi is a field. �


