ALPERIN’S FUSION THEOREM

CIHAN BAHRAN

I will try to reproduce the proof of Alperin’s fusion theorem for a saturated fusion sys-
tem. The sources I use are AKO(Aschbacher, Kessar and Oliver) and Craven. Through-
out this document, F is a saturated fusion system over a finite p-group S # 1.

Recall that given an isomorphism ¢ : P — @ in F, g € N, if and only if g € Ng(P)
and there exists h € Ng(Q) such that the diagram

p—2.p
Lo b
Q——0Q

commutes. The subgroup N, < Ng(P) has the property that if ¢ : P — @ extends to
®:R— Sin F for some R < Ng(P) then R < N,. And ¢ extends in S if and only if
extends in Ng(P): indeed if ¢ extends to U > P for some U < S, then it extends to
Ny (P) > P, which is contained in Ng(P).

Definition 1. An isomorphism ¢ : P — @ in F is called F-domestic if N, = P. A
subgroup P is called a F-domestic intersection if P is fully F-normalized and there
exists a F-domestic isomorphism ¢ : P — @ with ) also fully F-normalized.

So domestic isomorphisms in F are precisely those that cannot be extended (not just
in F but as a group homomorphism) to a larger subgroup of S than their domain.

In case F is the fusion system coming from a finite group, domestic intersections are

tame intersections (which appear in the original statement of Alperin’s Fusion Theo-
rem).

Proposition 2. If G is a finite group with S € Syl (G) and F = Fa(S), then an
F-domestic intersection P in F is a tame intersection in G.

Proof. Since F = Fg(S), the definition above yields that there exists g € G such
that 9P < S and both P and 9P are fully normalized, so Ng(P) € Syl,(Ng(P)) and
NS(gP) € Sylp(Ng(gP))

So we have

e P 5NYY,
) Ns(P) € Sylp(NG(P))7
° ng(P) S Sylp(NG(P))

And the fact that the conjugation ¢, : P — 9P can be extended to SNSY — 95N S in
F forces P =5N59. Hence P is a tame intersection. O

Let us recall some facts about groups with strongly p-embedded subgroups.

Definition 3. Let G be a finite group. A proper subgroup H < G is called strongly

p-embedded in G if p | |[H| but for every z € G — H we have p{ ["H N H|.
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Proposition 4. Let G be a finite group and H be a strongly p-embedded subgroup of
G. Then H contains a Sylow p-subgroup of G.

Proof. Since p | [H|, there exists g € H of order p. Now let 7" € Syl (G) such that
g €T. Asp | |G|, T is nontrivial, hence so is Z(T'). Hence there exists x € Z(T) of
order p. Now ¢* =g € H,s0 g € “H N H. Therefore p | |"H N H| so by definition of
being strongly p-embedded we get x € H. Now for every t € T, we have o' = x € H,
so v € 'H N H and similarly this yields t € H. Thus T' C H. O

Corollary 5. Let G be a finite group such that S € Syl,(G). If the set
H={H <G:H is strongly p-embedded in G}
is non-empty, then there exists H € H which contains S.

Proof. Pick K € H. Then we know that K contains a Sylow p-subgroup of G, which is
necessarily of the form SY9. Then H :=9K € H and S C H. O

Corollary 6. If a finite group G contains a strongly p-embedded subgroup, then O,(G) =
1.

Proof. Let H be a strongly p-embedded subgroup of G. Then there exists T' € Syl (G)
such that T' C H. By definition H < G so we may pick * € G— H for which * HNH must
be a p’-group. But on the other hand *T"NT is a p-subgroup of “HN H so *T'NT = 1.
But O,(G) is the intersection of the Sylow p-subgroups of G, so O,(G) = 1. O

Now by using the notion of strongly p-embedded we define a class of subgroups in F
which turn out to be domestic intersections.

Definition 7. P < S is called F-essential if P is fully normalized, F-centric and
Outz(P) = Autz(P)/Inn(P) contains a strongly p-embedded subgroup.

Proposition 8. FEssential subgroups are domestic intersections.

Proof. Let P be an essential subgroup. Since P is fully normalized and F is saturated,
P is fully automized, that is, Auts(P) € Syl (Autz(P)). So W := Autg(P)/Inn(P) is a
Sylow p-subgroup of Outx(P) and hence Out#(P) has a strongly p-embedded subgroup
M containing W. Pick § € Outz(P) — M, then M? N M is a p/-group so W & M?; or
equivalently W ¢ M. Moreover, since W NW is a p-subgroup of the p/-group * M N M
we have ‘W NW =1=WnNnW?,

Write 6 = @ where ¢ € Autxz(P). Then we have

Autg(P) N Autg(P)? = Inn(P),

and since N,, is precisely the inverse image of this subgroup of Autg(P) under the
surjection Ng(P) — Autg(P), we get N, = P. So ¢ is domestic and both P and
©(P) = P are a priori fully normalized so P is a domestic intersection. [l

We are almost ready to prove Alperin’s fusion theorem. Let’s prove another proposition
about strongly p-embedded subgroups.

Proposition 9 (AKO). Let G be a finite group and 1 # T € Syl (G). Set
Hr={(xeG:"TNT #1).
(1) If Hy = G then G contains no strongly p-embedded subgroups.



ALPERIN’S FUSION THEOREM 3

(2) If Hr < G then Hy is a strongly p-embedded subgroup of G. Moreover if H is
any strongly p-embedded subgroup of G that contains T', then H also contains
Hr.

Proof. (1) We show the contrapositive. Assume that G contains a strongly p-embedded
subgroup. Then G contains a strongly p-embedded subgroup H that contains 7. But
then for every x € G — H we have *T'NT = 1. Equivalently, *T'NT # 1 implies x € H.
Thus Hr < H < G.

(2) We showed the last part of (2) in (1). It remains to show that if Hy < G then Hyp is
strongly p-embedded in G. Assume x € G such that p | |[*Hp N Hy|. We want to show
that z € Hy. Pick g € *Hy N Hy of order p. Note that T' < Hp, so T' € Syl,(Hr). And
since ¢ and ¢ are elements of order p in Hrp, there exists y, z € Hr such that ¢"¢ € T
and g* € T'. So

gacy — (gz)zflmy c T N Tz’lzy’

hence z~txy € Hp; so x € Hry.
Also as T'< Hp, p| |H|. Thus Hr is strongly p-embedded in G. O

Corollary 10. Let P be a proper subgroup of S that is fully F-normalized. Set
Ep = (a € Autz(P) : a is not F-domestic) .

(1) If Ep = Autz(P), then P is not F-essential.
(2) If Ep < Autg(P), then P is F-essential and Ep/Inn(P) is a strongly p-
embedded subgroup of Outz(P).

Proof. We want to apply Proposition 9. Let G = Outz(P) and T' = Outg(P). Since P
is fully F-normalized and F is saturated, P is fully automized and hence T' € Syl (G).

Observe that for every a € Autz(P), N, contains PCs(P). Hence if P is not F-centric
then N, > P for every «, which gives Ep = Autxz(P).

So we may assume P is F-centric. Then PCg(P) = P and so
T = Ns(P)/PCs(P) = Ns(P)/P > 1
as P < S and S is a p-group.

Also, conjugation by elements of P evidently extends to the larger group S, so Inn(P) <
Ep. We claim that in Proposition 9’s notation, we have Hy = Ep/Inn(P). For this we
need to show that

Ep = (o € Autz(P) : “ Autg(P) N Autg(P) > Inn(P)) .
But indeed, « is not domestic if and only if N, > P. And considering the surjection
cp : Ns(P) — Autg(P), this happens if and only if
Inn(P) < c¢p(N,) = Autg(P) N Autg(P)*
which is, by taking a-conjugates, what we need.

So if Ep = Autx(P), then Hy = G so by Proposition 9, G = Outx(P) does not contain
a strongly p-embedded subgroup. Hence P is not F-essential.

And if Ep < Autg(P), then Hr < G so again by Proposition 9, Hp is strongly p-
embedded in G. We are already assuming P is fully F-normalized and F-centric, so P
is F-essential. O
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Definition 11. Given a subset of morphisms M in F, we write M for the collection
of morphisms that are obtained by restricting the morphisms in M to subgroups.

Soif o : U — V is in M and U’ < U such that o(U’) < V7, then the restriction
U — V' of pisin M. By definition of being a fusion system, we have F = F so M is
also a subset of morphisms in F.

We finally prove a form of Alperin’s fusion theorem for fusion systems:

Theorem 12. Let M = {p € Autz(P) : P = S or P is F-essential}. Then M
generates F as a category.

Proof. Write F' for the subcategory that M generates. Suppose F # F'. Then choose
¢ to be a morphism in F but not in " whose domain has the largest order possible. Say
v : P — Q. Note that the only morphisms in F with domain S are the automorphisms
of S which are already in M. So P < S.

Now the inclusion p(P) < @ is in M (it is a restriction of the identity S — S)
so the isomorphism P — ¢(P) cannot be in F’'. Hence we may assume ¢ to be an
isomorphism.

Now let R to be a fully normalized member of the F-isomorphism class [P] = [Q)].
Since F is saturated, R is fully automized and receptive, so there exist morphisms
a: Ng(P) — Ng(R) and 5 : Ng(Q) — Ng(R) in F such that «(P) = R and 5(Q) = R
(Lemma 2.6 in AKO). Since P < S, we have Ng(P) > P and Ng(Q) > @, so in
particular Ng(P) and Ng(Q) have larger order than P. Thus by our choice of P, o and
B are in F'. Since F' = F', the isomorphisms a|p : P — R and B|g : Q — R are also
in F'. Thus

(alp)™" o Blg o v € Autz(P)
is not in F’. So we may assume ¢ € Autz(P).

If P is F-essential then ¢ € M, a contradiction. If P is not F-essential, then by
Corollary 10 we have

Autz(P) = (o € Autz(P) : « is not F-domestic) .
So ¢ = ay---a, where each a; € Autz(P) is not F-domestic. So each «; can be

extended to a larger group than P, so again by the choice of P this forces o;’s to be in
F'. But ¢ was not in F’; a contradiction. O



