
ALPERIN’S FUSION THEOREM

CİHAN BAHRAN

I will try to reproduce the proof of Alperin’s fusion theorem for a saturated fusion sys-
tem. The sources I use are AKO(Aschbacher, Kessar and Oliver) and Craven. Through-
out this document, F is a saturated fusion system over a finite p-group S 6= 1.

Recall that given an isomorphism ϕ : P → Q in F , g ∈ Nϕ if and only if g ∈ NS(P )
and there exists h ∈ NS(Q) such that the diagram

P
cg //

ϕ

��

P

ϕ

��
Q

ch // Q

commutes. The subgroup Nϕ ≤ NS(P ) has the property that if ϕ : P → Q extends to
ϕ : R→ S in F for some R ≤ NS(P ) then R ≤ Nϕ. And ϕ extends in S if and only if
extends in NS(P ): indeed if ϕ extends to U > P for some U ≤ S, then it extends to
NU(P ) > P , which is contained in NS(P ).

Definition 1. An isomorphism ϕ : P → Q in F is called F-domestic if Nϕ = P . A
subgroup P is called a F-domestic intersection if P is fully F -normalized and there
exists a F -domestic isomorphism ϕ : P → Q with Q also fully F -normalized.

So domestic isomorphisms in F are precisely those that cannot be extended (not just
in F but as a group homomorphism) to a larger subgroup of S than their domain.

In case F is the fusion system coming from a finite group, domestic intersections are
tame intersections (which appear in the original statement of Alperin’s Fusion Theo-
rem).

Proposition 2. If G is a finite group with S ∈ Sylp(G) and F = FG(S), then an
F-domestic intersection P in F is a tame intersection in G.

Proof. Since F = FG(S), the definition above yields that there exists g ∈ G such
that gP ≤ S and both P and gP are fully normalized, so NS(P ) ∈ Sylp(NG(P )) and
NS(gP ) ∈ Sylp(NG(gP )).

So we have

• P ≤ S ∩ Sg,
• NS(P ) ∈ Sylp(NG(P )),
• NSg(P ) ∈ Sylp(NG(P )).

And the fact that the conjugation cg : P → gP can be extended to S ∩ Sg → gS ∩ S in
F forces P = S ∩ Sg. Hence P is a tame intersection. �

Let us recall some facts about groups with strongly p-embedded subgroups.

Definition 3. Let G be a finite group. A proper subgroup H < G is called strongly
p-embedded in G if p | |H| but for every x ∈ G−H we have p - |xH ∩H|.
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Proposition 4. Let G be a finite group and H be a strongly p-embedded subgroup of
G. Then H contains a Sylow p-subgroup of G.

Proof. Since p | |H|, there exists g ∈ H of order p. Now let T ∈ Sylp(G) such that
g ∈ T . As p | |G|, T is nontrivial, hence so is Z(T ). Hence there exists x ∈ Z(T ) of
order p. Now gx = g ∈ H, so g ∈ xH ∩H. Therefore p | |xH ∩H| so by definition of
being strongly p-embedded we get x ∈ H. Now for every t ∈ T , we have xt = x ∈ H,
so x ∈ tH ∩H and similarly this yields t ∈ H. Thus T ⊆ H. �

Corollary 5. Let G be a finite group such that S ∈ Sylp(G). If the set

H = {H ≤ G : H is strongly p-embedded in G}
is non-empty, then there exists H ∈ H which contains S.

Proof. Pick K ∈ H. Then we know that K contains a Sylow p-subgroup of G, which is
necessarily of the form Sg. Then H := gK ∈ H and S ⊆ H. �

Corollary 6. If a finite group G contains a strongly p-embedded subgroup, then Op(G) =
1.

Proof. Let H be a strongly p-embedded subgroup of G. Then there exists T ∈ Sylp(G)
such that T ⊆ H. By definition H < G so we may pick x ∈ G−H for which xH∩H must
be a p′-group. But on the other hand xT ∩ T is a p-subgroup of xH ∩H so xT ∩ T = 1.
But Op(G) is the intersection of the Sylow p-subgroups of G, so Op(G) = 1. �

Now by using the notion of strongly p-embedded we define a class of subgroups in F
which turn out to be domestic intersections.

Definition 7. P ≤ S is called F-essential if P is fully normalized, F -centric and
OutF(P ) = AutF(P )/ Inn(P ) contains a strongly p-embedded subgroup.

Proposition 8. Essential subgroups are domestic intersections.

Proof. Let P be an essential subgroup. Since P is fully normalized and F is saturated,
P is fully automized, that is, AutS(P ) ∈ Sylp(AutF(P )). So W := AutS(P )/ Inn(P ) is a
Sylow p-subgroup of OutF(P ) and hence OutF(P ) has a strongly p-embedded subgroup
M containing W . Pick θ ∈ OutF(P )−M , then M θ ∩M is a p′-group so W * M θ, or
equivalently θW *M . Moreover, since θW ∩W is a p-subgroup of the p′-group θM ∩M
we have θW ∩W = 1 = W ∩W θ.

Write θ = ϕ where ϕ ∈ AutF(P ). Then we have

AutS(P ) ∩ AutS(P )ϕ = Inn(P ) ,

and since Nϕ is precisely the inverse image of this subgroup of AutS(P ) under the
surjection NS(P ) → AutS(P ), we get Nϕ = P . So ϕ is domestic and both P and
ϕ(P ) = P are a priori fully normalized so P is a domestic intersection. �

We are almost ready to prove Alperin’s fusion theorem. Let’s prove another proposition
about strongly p-embedded subgroups.

Proposition 9 (AKO). Let G be a finite group and 1 6= T ∈ Sylp(G). Set

HT = 〈x ∈ G : xT ∩ T 6= 1〉 .

(1) If HT = G then G contains no strongly p-embedded subgroups.



ALPERIN’S FUSION THEOREM 3

(2) If HT < G then HT is a strongly p-embedded subgroup of G. Moreover if H is
any strongly p-embedded subgroup of G that contains T , then H also contains
HT .

Proof. (1) We show the contrapositive. Assume that G contains a strongly p-embedded
subgroup. Then G contains a strongly p-embedded subgroup H that contains T . But
then for every x ∈ G−H we have xT ∩T = 1. Equivalently, xT ∩T 6= 1 implies x ∈ H.
Thus HT ≤ H < G.

(2) We showed the last part of (2) in (1). It remains to show that if HT < G then HT is
strongly p-embedded in G. Assume x ∈ G such that p | |xHT ∩HT |. We want to show
that x ∈ HT . Pick g ∈ xHT ∩HT of order p. Note that T ≤ HT , so T ∈ Sylp(HT ). And
since gx and g are elements of order p in HT , there exists y, z ∈ HT such that gxy ∈ T
and gz ∈ T . So

gxy = (gz)z
−1xy ∈ T ∩ T z−1xy ,

hence z−1xy ∈ HT ; so x ∈ HT .

Also as T ≤ HT , p | |H|. Thus HT is strongly p-embedded in G. �

Corollary 10. Let P be a proper subgroup of S that is fully F-normalized. Set

EP = 〈α ∈ AutF(P ) : α is not F-domestic〉 .

(1) If EP = AutF(P ), then P is not F-essential.
(2) If EP < AutF(P ), then P is F-essential and EP/ Inn(P ) is a strongly p-

embedded subgroup of OutF(P ).

Proof. We want to apply Proposition 9. Let G = OutF(P ) and T = OutS(P ). Since P
is fully F -normalized and F is saturated, P is fully automized and hence T ∈ Sylp(G).

Observe that for every α ∈ AutF(P ), Nα contains PCS(P ). Hence if P is not F -centric
then Nα > P for every α, which gives EP = AutF(P ).

So we may assume P is F -centric. Then PCS(P ) = P and so

T ∼= NS(P )/PCS(P ) = NS(P )/P > 1

as P < S and S is a p-group.

Also, conjugation by elements of P evidently extends to the larger group S, so Inn(P ) ≤
EP . We claim that in Proposition 9’s notation, we have HT = EP/ Inn(P ). For this we
need to show that

EP = 〈α ∈ AutF(P ) : α AutS(P ) ∩ AutS(P ) > Inn(P )〉 .
But indeed, α is not domestic if and only if Nα > P . And considering the surjection
cP : NS(P )→ AutS(P ), this happens if and only if

Inn(P ) < cP (Nα) = AutS(P ) ∩ AutS(P )α

which is, by taking α-conjugates, what we need.

So if EP = AutF(P ), then HT = G so by Proposition 9, G = OutF(P ) does not contain
a strongly p-embedded subgroup. Hence P is not F -essential.

And if EP < AutF(P ), then HT < G so again by Proposition 9, HT is strongly p-
embedded in G. We are already assuming P is fully F -normalized and F -centric, so P
is F -essential. �
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Definition 11. Given a subset of morphisms M in F , we write M for the collection
of morphisms that are obtained by restricting the morphisms in M to subgroups.

So if ϕ : U → V is in M and U ′ ≤ U such that ϕ(U ′) ≤ V ′, then the restriction
U ′ → V ′ of ϕ is inM. By definition of being a fusion system, we have F = F soM is
also a subset of morphisms in F .

We finally prove a form of Alperin’s fusion theorem for fusion systems:

Theorem 12. Let M = {ϕ ∈ AutF(P ) : P = S or P is F-essential}. Then M
generates F as a category.

Proof. Write F ′ for the subcategory thatM generates. Suppose F 6= F ′. Then choose
ϕ to be a morphism in F but not in F ′ whose domain has the largest order possible. Say
ϕ : P → Q. Note that the only morphisms in F with domain S are the automorphisms
of S which are already in M. So P < S.

Now the inclusion ϕ(P ) ↪→ Q is in M (it is a restriction of the identity S → S)
so the isomorphism P → ϕ(P ) cannot be in F ′. Hence we may assume ϕ to be an
isomorphism.

Now let R to be a fully normalized member of the F -isomorphism class [P ] = [Q].
Since F is saturated, R is fully automized and receptive, so there exist morphisms
α : NS(P )→ NS(R) and β : NS(Q)→ NS(R) in F such that α(P ) = R and β(Q) = R
(Lemma 2.6 in AKO). Since P < S, we have NS(P ) > P and NS(Q) > Q, so in
particular NS(P ) and NS(Q) have larger order than P . Thus by our choice of P , α and
β are in F ′. Since F ′ = F ′, the isomorphisms α|P : P → R and β|Q : Q → R are also
in F ′. Thus

(α|P )−1 ◦ β|Q ◦ ϕ ∈ AutF(P )

is not in F ′. So we may assume ϕ ∈ AutF(P ).

If P is F -essential then ϕ ∈ M, a contradiction. If P is not F -essential, then by
Corollary 10 we have

AutF(P ) = 〈α ∈ AutF(P ) : α is not F -domestic〉 .
So ϕ = α1 · · ·αn where each αi ∈ AutF(P ) is not F -domestic. So each αi can be
extended to a larger group than P , so again by the choice of P this forces αi’s to be in
F ′. But ϕ was not in F ′; a contradiction. �


