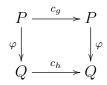
ALPERIN'S FUSION THEOREM

CİHAN BAHRAN

I will try to reproduce the proof of Alperin's fusion theorem for a saturated fusion system. The sources I use are AKO(Aschbacher, Kessar and Oliver) and Craven. Throughout this document, \mathcal{F} is a saturated fusion system over a finite *p*-group $S \neq 1$.

Recall that given an isomorphism $\varphi : P \to Q$ in $\mathcal{F}, g \in N_{\varphi}$ if and only if $g \in N_S(P)$ and there exists $h \in N_S(Q)$ such that the diagram



commutes. The subgroup $N_{\varphi} \leq N_S(P)$ has the property that if $\varphi : P \to Q$ extends to $\overline{\varphi} : R \to S$ in \mathcal{F} for some $R \leq N_S(P)$ then $R \leq N_{\varphi}$. And φ extends in S if and only if extends in $N_S(P)$: indeed if φ extends to U > P for some $U \leq S$, then it extends to $N_U(P) > P$, which is contained in $N_S(P)$.

Definition 1. An isomorphism $\varphi : P \to Q$ in \mathcal{F} is called \mathcal{F} -domestic if $N_{\varphi} = P$. A subgroup P is called a \mathcal{F} -domestic intersection if P is fully \mathcal{F} -normalized and there exists a \mathcal{F} -domestic isomorphism $\varphi : P \to Q$ with Q also fully \mathcal{F} -normalized.

So domestic isomorphisms in \mathcal{F} are precisely those that cannot be extended (not just in \mathcal{F} but as a group homomorphism) to a larger subgroup of S than their domain.

In case \mathcal{F} is the fusion system coming from a finite group, domestic intersections are tame intersections (which appear in the original statement of Alperin's Fusion Theorem).

Proposition 2. If G is a finite group with $S \in Syl_p(G)$ and $\mathcal{F} = \mathcal{F}_G(S)$, then an \mathcal{F} -domestic intersection P in \mathcal{F} is a tame intersection in G.

Proof. Since $\mathcal{F} = \mathcal{F}_G(S)$, the definition above yields that there exists $g \in G$ such that ${}^{g}P \leq S$ and both P and ${}^{g}P$ are fully normalized, so $N_S(P) \in \operatorname{Syl}_p(N_G(P))$ and $N_S({}^{g}P) \in \operatorname{Syl}_p(N_G({}^{g}P))$.

So we have

• $P \leq S \cap S^g$,

- $N_S(P) \in \operatorname{Syl}_p(N_G(P)),$
- $N_{S^g}(P) \in \operatorname{Syl}_n(N_G(P)).$

And the fact that the conjugation $c_g: P \to {}^gP$ can be extended to $S \cap S^g \to {}^gS \cap S$ in \mathcal{F} forces $P = S \cap S^g$. Hence P is a tame intersection.

Let us recall some facts about groups with strongly *p*-embedded subgroups.

Definition 3. Let G be a finite group. A proper subgroup H < G is called **strongly** p-embedded in G if $p \mid |H|$ but for every $x \in G - H$ we have $p \nmid |^{x}H \cap H|$.

Proposition 4. Let G be a finite group and H be a strongly p-embedded subgroup of G. Then H contains a Sylow p-subgroup of G.

Proof. Since $p \mid |H|$, there exists $g \in H$ of order p. Now let $T \in \operatorname{Syl}_p(G)$ such that $g \in T$. As $p \mid |G|$, T is nontrivial, hence so is Z(T). Hence there exists $x \in Z(T)$ of order p. Now $g^x = g \in H$, so $g \in {}^xH \cap H$. Therefore $p \mid |{}^xH \cap H|$ so by definition of being strongly p-embedded we get $x \in H$. Now for every $t \in T$, we have $x^t = x \in H$, so $x \in {}^tH \cap H$ and similarly this yields $t \in H$. Thus $T \subseteq H$.

Corollary 5. Let G be a finite group such that $S \in Syl_p(G)$. If the set

 $\mathcal{H} = \{ H \le G : H \text{ is strongly } p \text{-embedded in } G \}$

is non-empty, then there exists $H \in \mathcal{H}$ which contains S.

Proof. Pick $K \in \mathcal{H}$. Then we know that K contains a Sylow p-subgroup of G, which is necessarily of the form S^g . Then $H := {}^g K \in \mathcal{H}$ and $S \subseteq H$.

Corollary 6. If a finite group G contains a strongly p-embedded subgroup, then $O_p(G) = 1$.

Proof. Let H be a strongly p-embedded subgroup of G. Then there exists $T \in \operatorname{Syl}_p(G)$ such that $T \subseteq H$. By definition H < G so we may pick $x \in G - H$ for which ${}^xH \cap H$ must be a p'-group. But on the other hand ${}^xT \cap T$ is a p-subgroup of ${}^xH \cap H$ so ${}^xT \cap T = 1$. But $O_p(G)$ is the intersection of the Sylow p-subgroups of G, so $O_p(G) = 1$. \Box

Now by using the notion of strongly *p*-embedded we define a class of subgroups in \mathcal{F} which turn out to be domestic intersections.

Definition 7. $P \leq S$ is called \mathcal{F} -essential if P is fully normalized, \mathcal{F} -centric and $\operatorname{Out}_{\mathcal{F}}(P) = \operatorname{Aut}_{\mathcal{F}}(P) / \operatorname{Inn}(P)$ contains a strongly p-embedded subgroup.

Proposition 8. Essential subgroups are domestic intersections.

Proof. Let P be an essential subgroup. Since P is fully normalized and \mathcal{F} is saturated, P is fully automized, that is, $\operatorname{Aut}_S(P) \in \operatorname{Syl}_p(\operatorname{Aut}_{\mathcal{F}}(P))$. So $W := \operatorname{Aut}_S(P) / \operatorname{Inn}(P)$ is a Sylow p-subgroup of $\operatorname{Out}_{\mathcal{F}}(P)$ and hence $\operatorname{Out}_{\mathcal{F}}(P)$ has a strongly p-embedded subgroup M containing W. Pick $\theta \in \operatorname{Out}_{\mathcal{F}}(P) - M$, then $M^{\theta} \cap M$ is a p'-group so $W \nsubseteq M^{\theta}$, or equivalently ${}^{\theta}W \nsubseteq M$. Moreover, since ${}^{\theta}W \cap W$ is a p-subgroup of the p'-group ${}^{\theta}M \cap M$ we have ${}^{\theta}W \cap W = 1 = W \cap W^{\theta}$.

Write $\theta = \overline{\varphi}$ where $\varphi \in \operatorname{Aut}_{\mathcal{F}}(P)$. Then we have

$$\operatorname{Aut}_{S}(P) \cap \operatorname{Aut}_{S}(P)^{\varphi} = \operatorname{Inn}(P),$$

and since N_{φ} is precisely the inverse image of this subgroup of $\operatorname{Aut}_{S}(P)$ under the surjection $N_{S}(P) \to \operatorname{Aut}_{S}(P)$, we get $N_{\varphi} = P$. So φ is domestic and both P and $\varphi(P) = P$ are a priori fully normalized so P is a domestic intersection.

We are almost ready to prove Alperin's fusion theorem. Let's prove another proposition about strongly *p*-embedded subgroups.

Proposition 9 (AKO). Let G be a finite group and $1 \neq T \in Syl_p(G)$. Set

$$H_T = \langle x \in G : {}^xT \cap T \neq 1 \rangle.$$

(1) If $H_T = G$ then G contains no strongly p-embedded subgroups.

(2) If $H_T < G$ then H_T is a strongly p-embedded subgroup of G. Moreover if H is any strongly p-embedded subgroup of G that contains T, then H also contains H_T .

Proof. (1) We show the contrapositive. Assume that G contains a strongly p-embedded subgroup. Then G contains a strongly p-embedded subgroup H that contains T. But then for every $x \in G - H$ we have ${}^{x}T \cap T = 1$. Equivalently, ${}^{x}T \cap T \neq 1$ implies $x \in H$. Thus $H_T \leq H < G$.

(2) We showed the last part of (2) in (1). It remains to show that if $H_T < G$ then H_T is strongly *p*-embedded in *G*. Assume $x \in G$ such that $p \mid |^x H_T \cap H_T|$. We want to show that $x \in H_T$. Pick $g \in {}^x H_T \cap H_T$ of order *p*. Note that $T \leq H_T$, so $T \in \text{Syl}_p(H_T)$. And since g^x and *g* are elements of order *p* in H_T , there exists $y, z \in H_T$ such that $g^{xy} \in T$ and $g^z \in T$. So

$$g^{xy} = (g^z)^{z^{-1}xy} \in T \cap T^{z^{-1}xy}$$

hence $z^{-1}xy \in H_T$; so $x \in H_T$.

Also as $T \leq H_T$, $p \mid |H|$. Thus H_T is strongly p-embedded in G.

Corollary 10. Let P be a proper subgroup of S that is fully \mathcal{F} -normalized. Set

 $E_P = \langle \alpha \in \operatorname{Aut}_{\mathcal{F}}(P) : \alpha \text{ is } \operatorname{not} \mathcal{F}\text{-domestic} \rangle.$

- (1) If $E_P = \operatorname{Aut}_{\mathcal{F}}(P)$, then P is not \mathcal{F} -essential.
- (2) If $E_P < \operatorname{Aut}_{\mathcal{F}}(P)$, then P is \mathcal{F} -essential and $E_P/\operatorname{Inn}(P)$ is a strongly pembedded subgroup of $\operatorname{Out}_{\mathcal{F}}(P)$.

Proof. We want to apply Proposition 9. Let $G = \operatorname{Out}_{\mathcal{F}}(P)$ and $T = \operatorname{Out}_{S}(P)$. Since P is fully \mathcal{F} -normalized and \mathcal{F} is saturated, P is fully automized and hence $T \in \operatorname{Syl}_{p}(G)$.

Observe that for every $\alpha \in \operatorname{Aut}_{\mathcal{F}}(P)$, N_{α} contains $PC_S(P)$. Hence if P is not \mathcal{F} -centric then $N_{\alpha} > P$ for every α , which gives $E_P = \operatorname{Aut}_{\mathcal{F}}(P)$.

So we may assume P is \mathcal{F} -centric. Then $PC_S(P) = P$ and so

$$T \cong N_S(P)/PC_S(P) = N_S(P)/P > 1$$

as P < S and S is a p-group.

Also, conjugation by elements of P evidently extends to the larger group S, so $\text{Inn}(P) \leq E_P$. We claim that in Proposition 9's notation, we have $H_T = E_P/\text{Inn}(P)$. For this we need to show that

$$E_P = \left\langle \alpha \in \operatorname{Aut}_{\mathcal{F}}(P) : {}^{\alpha} \operatorname{Aut}_S(P) \cap \operatorname{Aut}_S(P) > \operatorname{Inn}(P) \right\rangle.$$

But indeed, α is not domestic if and only if $N_{\alpha} > P$. And considering the surjection $c_P : N_S(P) \to \operatorname{Aut}_S(P)$, this happens if and only if

$$\operatorname{Inn}(P) < c_P(N_\alpha) = \operatorname{Aut}_S(P) \cap \operatorname{Aut}_S(P)^{\alpha}$$

which is, by taking α -conjugates, what we need.

So if $E_P = \operatorname{Aut}_{\mathcal{F}}(P)$, then $H_T = G$ so by Proposition 9, $G = \operatorname{Out}_{\mathcal{F}}(P)$ does not contain a strongly *p*-embedded subgroup. Hence *P* is not \mathcal{F} -essential.

And if $E_P < \operatorname{Aut}_{\mathcal{F}}(P)$, then $H_T < G$ so again by Proposition 9, H_T is strongly *p*-embedded in *G*. We are already assuming *P* is fully \mathcal{F} -normalized and \mathcal{F} -centric, so *P* is \mathcal{F} -essential.

Definition 11. Given a subset of morphisms \mathcal{M} in \mathcal{F} , we write $\overline{\mathcal{M}}$ for the collection of morphisms that are obtained by restricting the morphisms in \mathcal{M} to subgroups.

So if $\varphi : U \to V$ is in \mathcal{M} and $U' \leq U$ such that $\varphi(U') \leq V'$, then the restriction $U' \to V'$ of φ is in $\overline{\mathcal{M}}$. By definition of being a fusion system, we have $\overline{\mathcal{F}} = \mathcal{F}$ so $\overline{\mathcal{M}}$ is also a subset of morphisms in \mathcal{F} .

We finally prove a form of Alperin's fusion theorem for fusion systems:

Theorem 12. Let $\mathcal{M} = \{ \varphi \in \operatorname{Aut}_{\mathcal{F}}(P) : P = S \text{ or } P \text{ is } \mathcal{F}\text{-essential} \}$. Then $\overline{\mathcal{M}}$ generates \mathcal{F} as a category.

Proof. Write \mathcal{F}' for the subcategory that $\overline{\mathcal{M}}$ generates. Suppose $\mathcal{F} \neq \mathcal{F}'$. Then choose φ to be a morphism in \mathcal{F} but not in \mathcal{F}' whose domain has the largest order possible. Say $\varphi: P \to Q$. Note that the only morphisms in \mathcal{F} with domain S are the automorphisms of S which are already in \mathcal{M} . So P < S.

Now the inclusion $\varphi(P) \hookrightarrow Q$ is in $\overline{\mathcal{M}}$ (it is a restriction of the identity $S \to S$) so the isomorphism $P \to \varphi(P)$ cannot be in \mathcal{F}' . Hence we may assume φ to be an isomorphism.

Now let R to be a fully normalized member of the \mathcal{F} -isomorphism class [P] = [Q]. Since \mathcal{F} is saturated, R is fully automized and receptive, so there exist morphisms $\alpha : N_S(P) \to N_S(R)$ and $\beta : N_S(Q) \to N_S(R)$ in \mathcal{F} such that $\alpha(P) = R$ and $\beta(Q) = R$ (Lemma 2.6 in AKO). Since P < S, we have $N_S(P) > P$ and $N_S(Q) > Q$, so in particular $N_S(P)$ and $N_S(Q)$ have larger order than P. Thus by our choice of P, α and β are in \mathcal{F}' . Since $\overline{\mathcal{F}'} = \mathcal{F}'$, the isomorphisms $\alpha|_P : P \to R$ and $\beta|_Q : Q \to R$ are also in \mathcal{F}' . Thus

$$(\alpha|_P)^{-1} \circ \beta|_Q \circ \varphi \in \operatorname{Aut}_{\mathcal{F}}(P)$$

is not in \mathcal{F}' . So we may assume $\varphi \in \operatorname{Aut}_{\mathcal{F}}(P)$.

If P is \mathcal{F} -essential then $\varphi \in \mathcal{M}$, a contradiction. If P is not \mathcal{F} -essential, then by Corollary 10 we have

$$\operatorname{Aut}_{\mathcal{F}}(P) = \langle \alpha \in \operatorname{Aut}_{\mathcal{F}}(P) : \alpha \text{ is not } \mathcal{F}\text{-domestic} \rangle.$$

So $\varphi = \alpha_1 \cdots \alpha_n$ where each $\alpha_i \in \operatorname{Aut}_{\mathcal{F}}(P)$ is not \mathcal{F} -domestic. So each α_i can be extended to a larger group than P, so again by the choice of P this forces α_i 's to be in \mathcal{F}' . But φ was not in \mathcal{F}' ; a contradiction.